基于结构自保温的高性能页岩陶粒混凝土试验研究^{*}

杨健辉¹² 陈 静² 张 鹏² 秦本东² 赵红兵³

(1.河南理工大学深部矿井建设重点学科开放实验室,河南焦作 454000;

2. 河南理工大学土木工程学院,河南焦作 454000; 3. 焦作市住建局,河南焦作 454000)

摘 要:为了配制出高性能页岩陶粒混凝土,以强度和导热系数为设计目标,通过正交试验,得到了强度 等级不低于 LC40 的页岩陶粒混凝土最佳配合比,并分别研究了河砂、不同纤维对陶粒混凝土性能的影响。 结果表明,河砂对混凝土强度影响不大,而钢纤维掺量为 2% 时,其抗压、抗折、劈拉强度均有明显提高,并优 于其他纤维品种;陶粒混凝土的轴心与立方体抗压强度接近,且弹性模量较低,峰值应变与总应变较大。最 后,对假定的几种结构混凝土和围护结构的保温措施,采用热工模拟计算,得到了节能率不低于 65% 的一体 化建筑保温系统。

关键词:页岩陶粒混凝土;增强纤维;强度;本构关系;抗震验算;导热系数 DOI: 10.13204/j.gyjz201412020

EXPERIMENTAL STUDY ON HIGH-PERFORMANCE SHALE CERAMSITE CONCRETE BASED ON INSULATION STRUCTURE

Yang Jianhui^{1 2} Chen Jing² Zhang Peng² Qin Bendong² Zhao Hongbing³

(1. Opening Project of Key Laboratory of Deep Mine Construction, Henan Polytechnic

University, Jiaozuo 454000, China; 2. School of Civil Engineering of Henan Polytechnic University,

Jiaozuo 454000, China; 3. Housing Construction Bureau of Jiaozuo, Jiaozuo 454000, China)

Abstract: In order to make up high performance ceramsite concrete (HPCC) and be applied in engineering practice , the best mixture ratio of high-strength shale ceramsite concrete (HSSCC) no less than LC40 is obtained by orthogonal tests based on the indexes of strength and thermal conductivity , then the effects of sand and different fibers on physical-mechanical properties of CC are studied. The test results show that the sand has little effect on strength , but steel fibers have a great deal when added 2% , the compressive strength , splitting strength and flexural strength are all higher than ordinary one. Besides , the axial strength is similar to cube compressive strength , and the elastic modulus is lower , the peak strains and the total strains are larger. In the end , the integration system of insulation building is founded and the economy energy rate is not less than 65% by aseismic check based on the upper test results , including of the physical-mechanical properties , and the supposed several types of structure concretes and outer protective structures.

Keywords: shale ceramsite concrete; strengthen fiber; strength; constitutive relation; aseismic check; thermal conductivity coefficient

虽然我国对轻骨料混凝土的研究及应用始于 40 多年前,但由于当时经济、技术等各方面原因,并 没有在实际工程中被广泛应用^[1]。但近几年来,随 着我国国民经济的飞速发展,人民生活水平日益提 高,带动着建筑技术的更新换代周期日趋缩短。同 时,伴随着建筑向大跨度、高层和超高层等多样化方 向发展,尤其是《居住建筑节能设计65%标准》的执 行以及《2010—2020年中国长期科学和技术发展目 标规划纲要》要求,轻骨料混凝土因其具有保温、隔 热、保湿、耐火、抗冻、轻质高强、良好的抗震性和抗爆 炸冲击性、高耐久性和抗裂性以及显著的综合经济效 益等优点 .而获得了前所未有的广阔发展前景。

目前,我国陶粒混凝土主要应用于低强度的非 承重结构,而在承重结构中应用还较少。但随着轻

* 国家自然科学基金项目(41172317);深部矿井建设省重点学科开 放实验室开放基金(2011KF - 01);河南省教育厅科技攻关项目 (2010A560010)。

第一作者:杨健辉,男,1969年出生,博士(后)教授。 电子信箱: yjh. dr@163. com 收稿日期: 2014-08-16

102 Industrial Construction Vol. 44 No. 12 2014

工业建筑 2014 年第 44 卷第 12 期

骨料生产的多样性以及轻骨料混凝土制备技术的进步,其性能得到了极大提高,高强轻骨料的生产也已形成一定的规模^[2]。在此背景下,轻骨料混凝土逐渐在高层建筑和大跨度桥梁等工程中获得应用。如珠海国际会议中心采用了 LC30 泵送轻骨料混凝土,武汉证券大厦 64~68 层楼板使用了 LC35 轻骨料混凝土,云南建工医院主体结构使用 LC40 轻骨料混凝土,天津永定新河大桥引桥应用了预应力LC40 高强轻骨料混凝土,京珠高速公路湖北段蔡甸汉江大桥和洛阳新区牡丹桥桥面均使用了 LC40 泵送纤维增强轻骨料混凝土^[3]。

虽然高强轻骨料混凝土在桥梁工程方面已经 取得一定的市场份额,但还仅仅是很小的一部分, 而且在不同的国家,高强轻骨料混凝土的应用情 况相差很大^[4-6]。因此,本课题组针对页岩陶粒素 混凝土和陶粒纤维混凝土的物理力学性能以及单 轴压应力下的本构关系进行试验研究,并按目前 常用的几种保温围护结构,对焦作市一具体民用 建筑工程进行了热工模拟计算,以期为相关工程 提供借鉴。

1 试验原材料

1.1 粗骨料

采用河南美赛克科技有限公司生产的页岩陶 粒 密度等级为 800 级,堆积密度为755 kg/m³,经预 防水处理后 24 h 吸水率由 10.9% 降为 6.3% 粒径 为 5~20 mm,颗粒级配良好。

1.2 细骨料

采用河南美赛克科技有限公司生产的页岩陶 砂,密度等级为900级,堆积密度为806 kg/m³,经预 防水处理后,24 h吸水率由23.8%降为13.4%,粒 径不大于5 mm,颗粒级配良好。

1.3 水 泥

采用焦作市坚固水泥厂生产的 P•O 42.5R 坚固牌普通硅酸盐水泥。

1.4 矿物外加剂

粉煤灰:采用平顶山姚孟电厂所生产的 I 级粉 煤灰。其化学成分见表 1。

耒 1	粉煤茄化学成分
1X I	机床火心子ル刀

	Table 1	The chen	nical con	position	of fly as	h %
S:0	41.0	F. O	C 0	MO	ΚO	Na O

5102	AI_2O_3	re_2O_3	CaO	MgO	$\kappa_2 0$	Na_2O
58.96	28.94	3.51	1.70	0.74	2.24	0.52

硅灰:采用新乡海运特种水泥公司所生产的硅 灰 化学成分见表 2。

基于结构自保温的高性能页岩陶粒混凝土试验研究——杨健辉 筹

表2 硅灰	瓦化学成分
-------	--------------

Table 2The chemical composition of silica fume%

SiO ₂	$\mathrm{Fe}_2\mathrm{O}_3$	Al_2O_3	CaO	烧失量	水分
85~90	3.2	2.2	< 1.8	<4.2	< 2

1.5 化学外加剂

采用河南银洲新型建材有限公司生产的 EAST-SAF 型高效减水剂和早强剂。其中,减水剂掺量为 水泥质量的1.8%,减水率为22%,采用后掺法;早 强剂掺量为水泥质量的2%~4%。

1.6 增强纤维

钢纤维(郑州禹建钢纤维有限公司生产的波浪 形钢纤维)、仿钢纤维(山东泰山工程材料有限公司 生产的波浪形仿钢纤维)和聚丙烯纤维(山东泰安 智荣工程材料有限公司生产的聚丙烯束状单丝纤 维) 其性能指标如表3所示。

表3 不同纤维的物理性能指标

纤维种类	密度	抗拉强度	弹性模量	极限伸长率
	$\rho/(\text{g} \cdot \text{m}^{-3})$	$f_{\rm t}$ / MPa	E/GPa	$\delta / \%$
聚丙烯纤维	0.91	350 ~ 700	3.0~5.0	15 ~ 35
钢纤维	7.8~7.9	1 470 ~2 500	$176 \sim 196$	$1.0 \sim 2.0$
仿钢纤维	0.91	>490	7.1	—

2 最佳配合比设计及试验结果分析

混凝土配合比设计采用松散体积法 即以给定的 1 m³ 混凝土的粗细骨料松散总体积为基础进行计算, 然后按照设计要求以混凝土干表观密度为依据进行 校核 最后通过试验调整得出配合比。配合比按照 JGJ 51—2002《轻骨料混凝土技术规程》规定进行,正 交试验设计为6因素3 水平 如表4 所示。

表4 因素水平

Table 4 The factors and level charts of orthogonal

	experiments							
水平	水泥 (A)	粉煤灰 (B)	硅灰 (C)	陶粒 (D)	陶砂 (E)	水 (F)		
1	400	50	35	520	700	140		
2	450	60	40	535	750	150		
3	500	70	45	550	800	160		

搅拌采用强制式搅拌机。先将粗骨料和细骨料 充分搅拌均匀(干拌),然后加入水泥、粉煤灰等干 拌,使其充分混合后,加水搅拌1 min,最后将剩余水 和减水剂同时加入拌和2 min。

试验步骤及试验方法参照 GB 50081—2002《普通混凝土力学性能试验方法标准》、GB/T 1743.1—2010《轻集料及其试验方法》和 JGJ/T 10—2010《轻

骨料混凝土技术规程》,采用标准试验方法测试。 其中,立方体抗压、劈裂抗拉、干表观密度与吸水率 试件的规格均为150 mm×150 mm×150 mm,抗折 试件规格为100 mm×100 mm×400 mm,轴心抗压 强度试件的规格为100 mm×100 mm×300 mm。试 验结果分别如表5一表7 所示。

因抗压强度权重大于导热系数权重 综合表 6 与 表 7 的结果 最终选择最优组合为 D₁A₂E₁B₂C₂F₃,即 各材料的质量比为:水泥:粉煤灰:硅灰:陶粒:陶砂: 水 = 1:0.133:0.089:1.156:1.556:0.356,混凝土水泥 用量为 450 kg/m³。

普通混凝土材料导热系数为 1.74 W/(m²•K)^[7] 以内,而页岩陶粒混凝土导热系数在 1.0 W/(m²• K)以内,如表 7 所示。较低的导热系数,可有效减 少热量的传递,增大蓄热功能,从而实现能源节约。

3 物理力学性能

根据表 6、表 7 中所得到的最佳配合比 28 d 龄 期时混凝土的物理力学性能指标如表 8 所示。

表 5 试验设计与结果

Table 5 The designs and results of orthogonal experiments

试验			小	(平因	素			$f_{\rm cu}$ /	$\lambda/$
号	1 A	2B	3C	4D	5E	6F	7	MPa	$(W \cdot m \cdot K^{-1})$
1	1	1	1	1	1	1	1	57.12	0. 61
2	1	2	2	2	2	2	2	43.34	0.69
3	1	3	3	3	3	3	3	45.11	0.71
4	2	1	1	2	2	3	3	42.96	0.82
5	2	2	2	3	3	1	1	52.77	0.93
6	2	3	3	1	1	2	2	50.26	0.66
7	3	1	2	1	3	2	3	56.98	0.96
8	3	2	3	2	1	3	1	45.14	0.84
9	3	3	1	3	2	1	2	47.87	0.95
10	1	1	3	3	2	2	1	42.27	0.71
11	1	2	1	1	3	3	2	41.63	0.76
12	1	3	2	2	1	1	3	40.09	0.64
13	2	1	2	3	1	3	2	54.75	0.72
14	2	2	3	1	2	1	3	46.41	0.80
15	2	3	1	2	3	2	1	44.45	0.92
16	3	1	3	2	3	1	2	47.25	0.98
17	3	2	1	3	1	2	3	50.32	0.88
18	3	3	2	1	2	3	1	48.56	0.85
	· +		- -						

注:λ表示导热系数。

表 6 28 d 抗压强度 f_{cu}分析

Table 6T	The analysis o	of compressive	strengths f_{cu}
----------	----------------	----------------	--------------------

水平因素	K_1	K_2	K_3	k_1	k_2	k_3	极差 R	因素主次	最优方案
1 A	269.56	291.60	296.12	44.93	48.60	49.35	4.42		
2B	301.33	279.61	276.34	50. 22	46.60	46.06	4.16		
3C	284.35	296.49	276.44	47.39	49.42	46.07	3.35		
4D	300.96	263.23	293.09	50.16	43.87	48.85	6.29	DAEBCF	$D_1 A_3 E_1 B_1 C_2 F_1$
5E	297.68	271.41	288.19	49.61	45.24	48.03	4.37		
6F	291.51	287.62	278.15	48.59	47.94	46.36	2.23		
7	290.31	285.10	281.87	48.39	47.52	46.98	1.41		

表7 导热系数λ分析

Table 7	The analysis	of thermal	conductivity	λ
---------	--------------	------------	--------------	---

水平因素	K_1	K_2	K_3	k_1	k_2	k_3	极差R	因素主次	最优方案
1 A	4.12	4.85	5.46	0.69	0.81	0.91	0.22		
2B	4.8	4.9	4.73	0.80	0.82	0.79	0.03		
3C	4.94	4.79	4.7	0.82	0.80	0.78	0.04		
4D	4.64	4.89	4.9	0.77	0.82	0.82	0.04	AED(CF)B	$A_1 E_1 D_1 C_3 F_3 B_3$
5E	4.35	4.82	5.26	0.73	0.80	0.88	0.15		
6F	4.91	4.82	4.7	0.82	0.80	0.78	0.04		
7	4.86	4.76	4.81	0.81	0.79	0.80	0.02		
7	4.86	4.76	4.81	0.81	0. 79	0.80	0.02		

表8 以最优配合比配制的页岩陶粒混凝土物理力学性能指标

Table 8	The physical	and mechanical	properties of shale
Lanc 0	The physical	and meenamean	properties of share

ceramsite concrete according to the optimal proportion

立方体抗	轴心抗压	劈裂抗拉	抗折强度	干表观密度
压强度	强度 <i>f</i> 。/	强度 <i>f</i> _{ts} /	$f_{\rm r}$ /	$ ho_{ m g}$ /
$f_{\rm cu}$ / MPa	MPa	MPa	MPa	(kg•m ⁻³)
55.72	51.78	3.87	5.06	1 828.2

经过反复试验,试验结果稳定,达到了结构陶粒 混凝土的设计强度要求。 轴心抗拉强度采用普通混凝土的关系式计 算^[8]:

$$\frac{f_{\rm cu}}{f_{\rm t}} = 6.4 + 0.1223 f_{\rm cu} \tag{1}$$

由式(1)得计算结果为 4.22 MPa,略高于劈裂 抗拉强度,但低于抗折强度。

此外,由表8可知,全轻页岩陶粒混凝土的 轴心抗压强度接近于其立方体抗压强度,二者比 值约为0.93,不同于采用轻粗骨料、普通砂的轻

工业建筑 2014 年第 44 卷第 12 期

骨料混凝土(二者比值为 0.815) 和普通混凝土 (二者比值为 0.76)。其主要原因是全轻混凝土 孔隙率大、材质疏脆,在轴向荷载作用下,试件横 向约束作用较轻粗骨料、普通砂的半轻骨料混凝 土和普通混凝土弱,导致其立方体抗压强度与轴 心抗压强度相比增加不多,且较普通混凝土略 大些^[9]。

3.1 河砂替代率对混凝土性能的影响

由于河砂远较页岩陶砂便宜,以致在工程中大 量采用河砂替代陶砂,从而导致混凝土性能劣化。 为探讨河砂对页岩陶粒混凝土的和易性与强度的影 响,在最佳配合比条件下,分别以0%、5%、10%和 15%的普通河砂去替代页岩陶砂,如表9所示,其试 验结果如表10所示。

 $k \sigma / m^3$

	表 9 LC50页岩陶粒混凝土配合比设计
Table 9	The proportioning design of shale ceramsite concrete for LC50

		Tuble >	ine proportio	ing acoign	or shule cert			,	ng, m
编号	水泥	粉煤灰	硅灰	陶粒	陶砂	河砂	水	减水剂	早强剂
1 – 1	450	60	40	520	700	0	160	8.01	8.78
1 - 2	450	60	40	520	665	35	160	8.01	8.78
1 – 3	450	60	40	520	630	70	160	8.01	8.78
1 - 4	450	60	40	520	595	105	160	8.01	8.78

表 10 LC50 页岩陶粒混凝土试验结果

Table 10 The test results of shale ceramsite

concrete for LC50

编号	坍落度 <i>T</i> /mm	黏聚性	保水性	28 d 抗压强度 f _{cu} /MPa
1 – 1	165	良好	良好	55.7
1 - 2	173	良好	一般	49.6
1 – 3	179	一般	一般	53.2
1 -4	185	一般	稍微沁水	54.6

由表 10 可知,1)页岩陶粒混凝土拌合物的和 易性随着河砂替代率的增大而变差;2)当河砂替 代率为0时强度最大。和易性变差是原本由陶砂 所吸附的一部分水分,不能被替代的普通河砂所 吸附而成为游离水,从而使坍落度逐渐增大。这 说明,在最佳配合比条件下,不需要用河砂替代陶 砂,陶粒混凝土即可满足工程要求。另一方面,河 砂替代部分或完全替代陶砂,虽然在适当配合比 条件下也能满足要求,但在泵送过程中将会增大 堵管的风险,这是因为河砂密度较大会在新拌混 凝土中快速沉淀,导致混凝土质量事故出现,如增 加裂缝风险、增加导热系数等弊病。此外,由于陶 粒与陶砂的多孔性,在混凝土养护中,可以配合粉 煤灰等活性掺材充分发挥内养护功能,从而可有 效提高后期强度。

3.2 钢纤维掺量对混凝土的影响

为探讨钢纤维对陶粒混凝土的和易性及其他力 学性能的影响,在最佳配合比条件下,分别选择体积 率^[10-12]为0%、0.5%、1%、1.5%、2%、3%和5%进 行试验,如表11所示,其试验结果如表12所示。

表 11 不同掺量钢纤维的混凝土配合比

伯旦	水泥/	粉煤灰/	硅灰/	陶粒/	陶砂/	钢纤维/	水/	减水剂/	早强剂/
細写	(kg•m ⁻³)	%	(kg•m ⁻³)	(kg•m ⁻³)	(kg•m ⁻³)				
2 - 1	450	60	40	520	700	0.0	160	8.01	8.78
2 - 2	450	60	40	520	700	0.5	160	8.01	8.78
2 - 3	450	60	40	520	700	1.0	160	8.01	8.78
2 - 4	450	60	40	520	700	1.5	160	8.01	8.78
2 - 5	450	60	40	520	700	2.0	160	8.01	8.78
2 - 6	450	60	40	520	700	3.0	160	8.01	8.78
2 - 7	450	60	40	520	700	5.0	160	8.01	8.78

表12 试验结果

 Table 12
 The experimental results

绐旦	T/	新聞		$f_{ m cu}$ /	$f_{\rm r}$ /	$f_{\rm ts}$ /
細石	mm	和永注	沐小注	MPa	MPa	MPa
2 – 1	165	良好	良好	55.7	5.1	3.9
2 – 2	160	良好	良好	58.5	5.9	4.6
2 – 3	156	良好	良好	61.8	6.8	5.3
2 - 4	152	良好	良好	63.1	7.4	6.5
2 – 5	143	良好	良好	66.3	8.2	7.9
2 – 6	141	一般	一般	66.5	8.1	7.6
2 - 7	138	不太好	一般	63.4	7.9	7.1

由表 12 可知,1) 当钢纤维掺量从 0% 增加到 5% 时 坍落度逐渐变小,即流动性变差,和易性越来越 差;2) 当钢纤维掺量增加到 2% 时,立方体抗压强度 的增长率最大可达 20%。但随着钢纤维掺量的继续 增加 强度虽有增长,但增幅并不大;3) 当钢纤维掺量 由 0% 增加到 2%,陶粒混凝土的抗折强度增幅达 65%,但钢纤维掺量增加到 3% 和 5% 时,抗折强度反 而会减小;4) 当钢纤维掺量达 2% 时,劈裂抗拉强度

基于结构自保温的高性能页岩陶粒混凝土试验研究——杨健辉 ,等

的增幅可超过1倍,但如果掺加过量,其强度并不能 有效提高;5)钢纤维对劈裂抗拉强度的增强效果优于 抗折强度。这表明,钢纤维的最大掺量为2%时,钢 纤维陶粒混凝土的韧性已经得到了明显提高。

4 单轴压应力条件下混凝土的本构关系

4.1 应力 - 应变曲线

分别制作最优配合比页岩陶粒素混凝土试件, 以及钢纤维2.0%、仿钢纤维和聚丙烯纤维掺量分 别为0.5%^[13]的混凝土试件以及混掺仿钢纤维与 聚丙烯纤维掺量分别为0.35%和0.15%的混凝土 试件 其试验结果如表 13 所示。

由图 1 和试验现象可知,LC50 页岩陶粒混凝土 试件在受力初期处于弹性变形状态;到达比例极限 时,应力、应变继续增长,并随着时间的推移,能听到 试件的劈裂声,说明试件已进入弹塑性阶段,此时应 变增长速率大于应力的增长速率;当压应力接近峰 值应力时,试件表面出现了竖向短小细微裂缝,应变 急剧增长;接着细微裂缝继续扩展,形态逐渐变粗变 长,直至试件完全破坏,且破坏是突发性的,能够听 到破坏时的爆裂声,这表明高强页岩陶粒混凝土的 破坏也属于脆性破坏。

	Tuble 10 The experimental data of sitess situm											
4-1 组(阝	淘粒混凝土)	4-2组(聚丙烯纤维 陶粒混凝土)		4 - 3 组 陶粒氵	1(钢纤维 昆凝土)	4 - 4 组(陶粒氵	4 - 4 组(仿钢纤维 陶粒混凝土)		4 - 5 组(聚丙烯纤维 + 仿 钢纤维陶粒混凝土)			
应力/MPa	纵应变/10-6	应力/MPa	纵应变/10-6	应力/MPa	纵应变/10-6	应力/MPa	纵应变/10-6	应力/MPa	纵应变/10-6			
0.00	0	0.00	0	0.00	0	0.00	0	0.00	0			
1.49	70	5.21	398	7.46	412	6.43	421	8.75	486			
10.50	504	13.21	521	19.34	612	12.70	536	14.74	693			
14.51	712	17.53	642	32.40	1 175	16.72	672	21.35	1 104			
18.42	937	27.15	1 057	46.78	1 413	26.21	1 179	28.31	1 285			
25.50	1 245	32.07	1 309	52.82	2 863	33.17	1 347	35.50	1 587			
33. 55	1 836	42.79	1 476	54.41	3 120	41.27	1 521	46.50	1 563			
38.72	2 357	53.57	3 012	49.84	3 861	47.84	1 457	52.17	2 912			
51.80	2 905	51.67	2 951	39.25	4 699	52.45	2 964	46.10	3 503			
43.47	3 415	45.71	4 017	30.14	4 876	49.89	2 893	39.25	3 706			
36.15	3 745	36.21	4 531	22.35	6 034	42.34	3 785	28.73	4 205			
27.50	4 121	23.74	5 103	13.21	8 104	32.79	4 412	22.37	4 715			
18.47	4 658	14.71	7 135	10.79	10 896	26.17	4 647	13.54	6 532			
17.45	5 874	10.13	11 213	9.81	13 213	17.21	5 394	9.71	9 500			
7.90	8 345	9.76	13 541	7.05	—	12.45	7 326	6.35	11 657			
5.62	11 276	9.01	—	6.12	—	10.97	10 357	3.03	12 708			
2.71	12 545	_	—	—	—	8.89	13 247	2.79	_			
2.13	_	_	_	_	_	7.32	_	_	_			

将 LC50 页岩陶粒混凝土与 C50 普通混凝土的 应力 – 应变曲线相比较可知: 1) 上升段相似; 2) 对 于下降段 在同等应力条件下 陶粒混凝土较普通混 凝土的应变大(如峰值应变约 700 × 10⁻⁶),这表明

106

陶粒混凝土的延性较好。

由各纤维混凝土的峰值应力比较可知,其峰值 应力与延性遵循同一规律,即钢纤维陶粒混凝土 > 聚丙烯纤维陶粒混凝土 > 仿钢纤维陶粒混凝土 > 仿 钢纤维 + 聚丙烯纤维。

根据试验结果和 JGJ 12 - 2006《轻骨料混凝土 结构设计规程》中推荐公式,LC50页岩陶粒混凝土 分段式应力 - 应变方程如式(2)所示。

$$\frac{\sigma_{\rm c}}{f_{\rm c}} = 1.5 \frac{\varepsilon_{\rm c}}{\varepsilon_0} - 0.5 \left(\frac{\varepsilon_{\rm c}}{\varepsilon_0}\right)^2 \qquad \varepsilon \leqslant \varepsilon_0 \quad (2a)$$

$$\frac{\sigma_{\rm c}}{f_{\rm c}} = \frac{(b+2)}{1+b} \frac{\varepsilon_{\rm c}}{\varepsilon_0} + \left(\frac{\varepsilon_{\rm c}}{\varepsilon_0}\right)^2 \qquad \varepsilon > \varepsilon_0 \quad (2b)$$

式中: 符号规定同 JGJ 12-2006; b 取 - 1.868。

工业建筑 2014 年第 44 卷第 12 期

4.2 弹性模量

本试验中,页岩陶粒混凝土的轴心抗压强度为 51.78 MPa,在20%~40%的抗压强度范围内处于 弹性变形阶段,因此选取20%~40%抗压强度范围 内的控制荷载和纵向形变作为计算弹性模量的依据。其中 实测弹性模量和由 JGJ 51—2002 中的公式计算得到的理论弹性模量(干表观密度取表 8 中的实测值 1 828.2 kg/m³) 如表 14 所示。

表 14 弹性模量的试验结果与理论结果

	Table 14	The test	results	and	theoretical	results	of	elastic	modulus
--	----------	----------	---------	-----	-------------	---------	----	---------	---------

编号	F/kN	占轴心抗压强度比例/%	σ / MPa	$E/10^3$ MPa	$f_{\rm cu\ k}/{ m MPa}$	$E_t/10^3$ MPa	相对误差/%
	110.74	20.3	10. 52	28.31	55.7		2.73
5 - 1	155.26	28.5	14.75	27.69	55.7	27.558	0.48
	193.37	35.5	18.37	27.45	55.7		0.39

注: F 表示控制荷载; σ 表示压应力; E 表示实测弹性模量; E₁表示理论弹性模量; f_{auk}表示立方体抗压强度标准值。

由表 14 可知,弹性模量的实测值与理论计算值 非常接近,说明本试验结果的可靠性以及所提出的 应力 – 应变模型的合理性。

5 建筑结构热工模拟计算及造价分析

5.1 工程概况

焦作市某大厦为九层框架结构,属中高层建 筑^[14],无地下室,长46.8 m,宽15.9 m,建筑高度 31.2 m,层高3.3 m,建筑面积6924.24 m²。楼梯间 采暖,采暖期天数为98 d^[15],采暖期室外平均温度 为1.4 ℃^[15],建筑体积22850 m³,换气体积V为 14852.49 m³。

5.2 热工模拟计算

本方案中 框架结构采用承重页岩陶粒混凝土, 内、外墙均分别采用 100 mm 厚、200 mm 厚粉煤灰 砌块,20 mm 厚陶砂发泡保温砂浆(导热系数为 0.106 W/(m²•K)),屋顶为不上人屋面,采用发泡 页岩陶砂(陶粒)混凝土(导热系数为0.141 3 W/ (m²•K)),由文献[15]中的公式计算可得,采暖耗 煤量为4.72 kg/m²。根据 1980年我国通用设计能 耗水平(耗煤量为25.2 kg/m²),可知本方案的节能 率为79.9%。由文献[12]可知 若框架结构采用普 通混凝土,外墙外保温采用聚苯板保温,其节能率为 67.8%,采暖耗煤量为8.113 kg/m²。

分别将钢纤维陶粒混凝土框架结构、聚丙烯纤 维陶粒混凝土框架结构、仿钢纤维陶粒混凝土框架 结构、混掺仿钢纤维和聚丙烯纤维陶粒混凝土框架 结构取代本方案中的页岩陶粒混凝土框架结构,其 节能率分别为 76.2%、81.06%、77.62%、81.19%。

如宜昌滨江国际大厦采用了页岩陶粒混凝土框 架剪力墙结构 对该工程分别用普通混凝土和陶粒 混凝土进行位移角计算 结果如表 15 所示。

由表 15 可知,在地震作用下,轻骨料混凝土标 准层层间位移角最大可减少17.4%,符合各国规范 及工程经验^[16]。此外,文献[17]也指出,与普通混 表 15 地震力作用下不同混凝土结构的层间位移角

 Table 15
 The displacement angles between layers for two

kinds of concrete structures under the action of

earthquake force

类型	周期/s	结构总 质量/t	最大层间位移角	
			X 方向	Y 方向
LC40 轻骨料混凝土	2.066 7	53 784. 375	1/5 167	1/4 240
(12 个标准层) C40 普通混凝土	2.053 9	53 886. 359	1/4 399	1/3 701
(11 个标准层)				

凝土框架结构相比,在 El centro 波作用下,层间位 移减小最大可达24.2%;在天津波作用下,层间位 移角减小最大达到32.0%。因层间位移角的减小 对结构破坏起到抑制作用,从而减少地震作用对结 构的破坏。

5.3 造价分析

在本工程中,若采用页岩陶粒混凝土,建筑物自 重可由原来的104 986 kN 降至 87 443.73 kN,重量 减轻了17%。因此,原来的桩径可减小200 mm,每 根桩可因此节省 C20 普通混凝土用量 9.33 m³, 32 根桩总共可节省混凝土用量 298.56 m³。焦作市 C20 商品混凝土的价格为270 元/m³ 因此仅基础一 项即可节省造价约 8.1 万元。综合考虑,可减少劳 动强度20%,减少材料运输重量30%~40%,降低 工程造价10%。

6 结 语

1) 通过对页岩陶粒混凝土的性能影响分析,采 用正交试验的方法,得到了强度等级不低于 LC40 的最佳配合比。即,水泥:粉煤灰:硅灰:陶粒:陶砂: 水=1:0.133:0.089:1.156:1.556:0.356,混凝土水 泥用量为 450 kg/m³。

 2) 对河砂替代页岩陶砂的试验发现,随着替代 率增加,混凝土拌合物的和易性逐渐变差,虽然强度 有所增大,但均未能超出0替代率时的强度。

3) 通过不同纤维掺量试验,表明随着钢纤维掺

基于结构自保温的高性能页岩陶粒混凝土试验研究——杨健辉 ,等

量的增加,页岩陶粒混凝土的抗压、抗折和劈拉强度 均有所增加,但抗压强度的增幅不大,而抗折强度和 劈裂抗拉强度的增加则较为显著,其最佳掺量为 2%。其他纤维也有类似规律,其对抗压强度的增强 效果依次是:钢纤维、聚丙烯纤维、仿钢纤维、30% 聚 丙烯纤维+70% 仿钢纤维。

4)由于轻骨料混凝土的孔隙率较大,在轴向荷载作用下,试件横向约束作用较弱,使得全轻页岩陶 粒混凝土的轴心抗压强度接近于其立方体抗压强 度,二者比值约为0.93。

5) LC50 页岩陶粒混凝土与 C50 的普通混凝土 应力 - 应变曲线类似,但应变较大。各纤维混凝土 的峰值应力大。依次为有钢纤维陶粒混凝土 > 聚丙 烯纤维陶粒混凝土 > 仿钢纤维陶粒混凝土 > 质钢纤 维 + 聚丙烯纤维陶粒混凝土。同时,其弹性模量也 较低,因此当结构采用轻骨料混凝土时可最大程度 提高抗变形能力,从而减少地震作用对结构的破坏, 因此更适宜于抗震、防爆等结构。抗震验算结果也 证明了这一观点。

6) 通过对焦作市一具体建筑的框架结构分别 采用上述不同种类混凝土的热工模拟计算结果可 知,当采用页岩陶粒混凝土,内、外墙均采用 20 mm 厚陶砂发泡保温砂浆,屋顶保温也采用发泡页岩陶 砂(陶粒)混凝土时,节能率为 79.9%,满足 65% 节 能标准。同时,可减轻劳动力强度 20%,减少材料 运输重量 30%~40% 降低工程造价 10%。

参考文献

[1] 姚燕. 新型高性能混凝土耐久性的研究与工程应用[M]. 北 京: 中国建筑材料工业出版社,2004:23-57.

(上接第16页)

2) 双向压弯作用下,试件滞回曲线不够饱满, 耗能能力一般。平面外弯矩越大,试件的平面内抗 侧承载力越低 极限位移越小,变形能力越差,滞回 耗能性能和延性性能也越差。

3) 双向压弯试件的平面外位移随着平面内水 平往复荷载的作用而不断增加,且随着试件进入塑 性阶段变形增幅明显增大,呈发散趋势。

 4) 双向压弯试件底部截面在弹性阶段基本满 足平截面假定。

参考文献

[1] 聂建国 陶慕轩 樊健生 等. 双钢板 - 混凝土组合剪力墙研究

- [2] 高振华,郭玉顺,木村薰,等.高性能轻骨料的生产、性能及成因剖析[J]. 混凝土,2001(2):3-6.
- [3] 王玉 杨健辉 启凌艳 ,等. 基于陶粒骨料的混凝土试验研究 [J]. 工业建筑 ,2011 *4*1(S1): 635-637.
- [4] 孙海林,丁建彤,叶列平.高强轻骨料混凝土在桥梁工程中的应用[C]//中国土木工程学会桥梁及结构工程分会第十五次年会论文集.北京:人民交通出版社,2002:787-793.
- [5] Melby K , Jordet E A , Hansvold C. Long-Span Bridges in Norway Constructed in High-Strength LWA Concrete [J]. Engineering Structures , 1996 , 18(11):845 – 849.
- [6] Gao J M , Sun W , Morino K. Mechanical Properties of Steel Fiber Reinforced High-Strength Lightweight Concrete [J]. Cement and Concrete Composites , 1997 , 19(1): 307 – 313.
- [7] JGJ 51—2002 轻骨料混凝土技术规程[S].
- [8] Lionello, Bortolotti. Interdependence of Concrete Strength Parameters [J]. ACI Materials Journal, 1990, 87(1): 25 – 26.
- [9] 王海龙. 轻骨料混凝土早期力学性能与抗冻性能的试验研究[D]. 包头: 内蒙古农业大学,2009.
- [10] 宋小雷,孙燕秋,曾志兴. 钢纤维陶粒混凝土基本力学性能的试验[J]. 工业建筑,2008 38(1):81-83.
- [11] 霍俊芳. 钢纤维改善轻骨料混凝土力学性能研究[J]. 工业建 筑 2007, 37(12): 96-99.
- [12] 王玉.基于结构保温的高性能陶粒混凝土试验研究[D].焦作:河南理工大学,2011.
- [13] 吴平安,刘宜平,杨洁,等.高强高性能混杂纤维轻骨料混凝 土的试验研究[C]//中国力学学会第18届全国结构工程学术 会议论文集.北京:2011:163-169.
- [14] GB 50096—2011 住宅设计规范[S].
- [15] 徐占发. 建筑节能技术实用手册[M]. 北京: 机械工业出版 社,2004: 257 - 279.
- [16] 刘世美. 地震作用下底框架结构层间位移变形分析[J]. 有色 金属设计,2011 38(1): 32-35.
- [17] 张广成,彭桂蒸,单礼会,等. 高强陶粒混凝土抗震性能研究[J]. 低温建筑技术,2010(3):42-44.

新进展[J]. 建筑结构 2011 A1(12):52-60.

- [2] 聂建国,卜凡民 樊健生. 低剪跨比双钢板-混凝土组合剪力墙 抗震性能试验研究[J]. 建筑结构学报,2011 32(11):74-81.
- [3] 陈锦石 涨军. 盐城广播电视塔双钢板组合剪力墙结构技术 [J]. 施工技术 2011 40(15):17-20.
- [4] 吴杰 陈麟 吴珊瑚. 新型高强混凝土组合剪力墙受剪性能研究[J]. 广州大学学报 2012(1):77-82.
- [5] 陈涛,肖从真,田春雨,等.高轴压比钢-混凝土组合剪力墙压 弯性能试验研究[J].土木工程学报 2011 44(6):1-7.
- [6] JGJ 101—96 建筑抗震试验方法规程[S].
- [7] Hitaka T , Matsui C , Sakai J. Cyclic Tests on Steel and Concrete-Filled Tube Frames with Slit Walls [J]. Earthquake Engineering and Structural Dynamics , 2007 36(6): 707 – 727.